Matematikan, zenbaki perfektua zenbaki arrunta da, bere zatitzaile propioen (alegia, 1a kontuan hartuta, baina ez zenbakia bera) baturaren balio bera duena. Bestela esanda, zenbaki perfektua da bere buruaren zenbaki laguna dena. Adibidez, 6 zenbaki perfektua da; bere zatitzaile propioak 1, 2 eta 3 dira eta 1 + 2 + 3 = 6 da. Hurrengo zenbaki perfektuak 28, 496 eta 8128 dira. Euklides matematikariak lehengo lau zenbaki perfektuetarako formula aurkitu zuen. n = 2: 21 × (22 – 1) = 6 n = 3: 22 × (23 – 1) = 28 n = 5: 24 × (25 – 1) = 496 n = 7: 26 × (27 – 1) = 8128

Property Value
dbo:abstract
  • Matematikan, zenbaki perfektua zenbaki arrunta da, bere zatitzaile propioen (alegia, 1a kontuan hartuta, baina ez zenbakia bera) baturaren balio bera duena. Bestela esanda, zenbaki perfektua da bere buruaren zenbaki laguna dena. Adibidez, 6 zenbaki perfektua da; bere zatitzaile propioak 1, 2 eta 3 dira eta 1 + 2 + 3 = 6 da. Hurrengo zenbaki perfektuak 28, 496 eta 8128 dira. Euklides matematikariak lehengo lau zenbaki perfektuetarako formula aurkitu zuen. n = 2: 21 × (22 – 1) = 6 n = 3: 22 × (23 – 1) = 28 n = 5: 24 × (25 – 1) = 496 n = 7: 26 × (27 – 1) = 8128 (eu)
  • Matematikan, zenbaki perfektua zenbaki arrunta da, bere zatitzaile propioen (alegia, 1a kontuan hartuta, baina ez zenbakia bera) baturaren balio bera duena. Bestela esanda, zenbaki perfektua da bere buruaren zenbaki laguna dena. Adibidez, 6 zenbaki perfektua da; bere zatitzaile propioak 1, 2 eta 3 dira eta 1 + 2 + 3 = 6 da. Hurrengo zenbaki perfektuak 28, 496 eta 8128 dira. Euklides matematikariak lehengo lau zenbaki perfektuetarako formula aurkitu zuen. n = 2: 21 × (22 – 1) = 6 n = 3: 22 × (23 – 1) = 28 n = 5: 24 × (25 – 1) = 496 n = 7: 26 × (27 – 1) = 8128 (eu)
dbo:wikiPageID
  • 328133 (xsd:integer)
dbo:wikiPageRevisionID
  • 3744807 (xsd:integer)
dct:subject
rdfs:comment
  • Matematikan, zenbaki perfektua zenbaki arrunta da, bere zatitzaile propioen (alegia, 1a kontuan hartuta, baina ez zenbakia bera) baturaren balio bera duena. Bestela esanda, zenbaki perfektua da bere buruaren zenbaki laguna dena. Adibidez, 6 zenbaki perfektua da; bere zatitzaile propioak 1, 2 eta 3 dira eta 1 + 2 + 3 = 6 da. Hurrengo zenbaki perfektuak 28, 496 eta 8128 dira. Euklides matematikariak lehengo lau zenbaki perfektuetarako formula aurkitu zuen. n = 2: 21 × (22 – 1) = 6 n = 3: 22 × (23 – 1) = 28 n = 5: 24 × (25 – 1) = 496 n = 7: 26 × (27 – 1) = 8128 (eu)
  • Matematikan, zenbaki perfektua zenbaki arrunta da, bere zatitzaile propioen (alegia, 1a kontuan hartuta, baina ez zenbakia bera) baturaren balio bera duena. Bestela esanda, zenbaki perfektua da bere buruaren zenbaki laguna dena. Adibidez, 6 zenbaki perfektua da; bere zatitzaile propioak 1, 2 eta 3 dira eta 1 + 2 + 3 = 6 da. Hurrengo zenbaki perfektuak 28, 496 eta 8128 dira. Euklides matematikariak lehengo lau zenbaki perfektuetarako formula aurkitu zuen. n = 2: 21 × (22 – 1) = 6 n = 3: 22 × (23 – 1) = 28 n = 5: 24 × (25 – 1) = 496 n = 7: 26 × (27 – 1) = 8128 (eu)
rdfs:label
  • Zenbaki perfektu (eu)
  • Zenbaki perfektu (eu)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is foaf:primaryTopic of